This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgrnloop0 , not using umgrnloop0 . (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | usgrnloop0ALT | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | neirr | |- -. U =/= U |
|
| 3 | 1 | usgrnloop | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { U , U } -> U =/= U ) ) |
| 4 | 2 3 | mtoi | |- ( G e. USGraph -> -. E. x e. dom E ( E ` x ) = { U , U } ) |
| 5 | simpr | |- ( ( G e. USGraph /\ ( E ` x ) = { U } ) -> ( E ` x ) = { U } ) |
|
| 6 | dfsn2 | |- { U } = { U , U } |
|
| 7 | 5 6 | eqtrdi | |- ( ( G e. USGraph /\ ( E ` x ) = { U } ) -> ( E ` x ) = { U , U } ) |
| 8 | 7 | ex | |- ( G e. USGraph -> ( ( E ` x ) = { U } -> ( E ` x ) = { U , U } ) ) |
| 9 | 8 | reximdv | |- ( G e. USGraph -> ( E. x e. dom E ( E ` x ) = { U } -> E. x e. dom E ( E ` x ) = { U , U } ) ) |
| 10 | 4 9 | mtod | |- ( G e. USGraph -> -. E. x e. dom E ( E ` x ) = { U } ) |
| 11 | ralnex | |- ( A. x e. dom E -. ( E ` x ) = { U } <-> -. E. x e. dom E ( E ` x ) = { U } ) |
|
| 12 | 10 11 | sylibr | |- ( G e. USGraph -> A. x e. dom E -. ( E ` x ) = { U } ) |
| 13 | rabeq0 | |- ( { x e. dom E | ( E ` x ) = { U } } = (/) <-> A. x e. dom E -. ( E ` x ) = { U } ) |
|
| 14 | 12 13 | sylibr | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |