This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg3.v | |- V = ( Vtx ` G ) |
|
| usgredg3.e | |- E = ( iEdg ` G ) |
||
| Assertion | usgredg4 | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> E. y e. V ( E ` X ) = { Y , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg3.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg3.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | usgredg3 | |- ( ( G e. USGraph /\ X e. dom E ) -> E. x e. V E. z e. V ( x =/= z /\ ( E ` X ) = { x , z } ) ) |
| 4 | eleq2 | |- ( ( E ` X ) = { x , z } -> ( Y e. ( E ` X ) <-> Y e. { x , z } ) ) |
|
| 5 | 4 | adantl | |- ( ( x =/= z /\ ( E ` X ) = { x , z } ) -> ( Y e. ( E ` X ) <-> Y e. { x , z } ) ) |
| 6 | 5 | adantl | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> ( Y e. ( E ` X ) <-> Y e. { x , z } ) ) |
| 7 | simplrr | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> z e. V ) |
|
| 8 | 7 | adantl | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> z e. V ) |
| 9 | preq2 | |- ( y = z -> { x , y } = { x , z } ) |
|
| 10 | 9 | eqeq2d | |- ( y = z -> ( { x , z } = { x , y } <-> { x , z } = { x , z } ) ) |
| 11 | 10 | adantl | |- ( ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) /\ y = z ) -> ( { x , z } = { x , y } <-> { x , z } = { x , z } ) ) |
| 12 | eqidd | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> { x , z } = { x , z } ) |
|
| 13 | 8 11 12 | rspcedvd | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> E. y e. V { x , z } = { x , y } ) |
| 14 | simprr | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> ( E ` X ) = { x , z } ) |
|
| 15 | preq1 | |- ( Y = x -> { Y , y } = { x , y } ) |
|
| 16 | 14 15 | eqeqan12rd | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> ( ( E ` X ) = { Y , y } <-> { x , z } = { x , y } ) ) |
| 17 | 16 | rexbidv | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> ( E. y e. V ( E ` X ) = { Y , y } <-> E. y e. V { x , z } = { x , y } ) ) |
| 18 | 13 17 | mpbird | |- ( ( Y = x /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> E. y e. V ( E ` X ) = { Y , y } ) |
| 19 | 18 | ex | |- ( Y = x -> ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 20 | simplrl | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> x e. V ) |
|
| 21 | 20 | adantl | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> x e. V ) |
| 22 | preq2 | |- ( y = x -> { z , y } = { z , x } ) |
|
| 23 | 22 | eqeq2d | |- ( y = x -> ( { x , z } = { z , y } <-> { x , z } = { z , x } ) ) |
| 24 | 23 | adantl | |- ( ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) /\ y = x ) -> ( { x , z } = { z , y } <-> { x , z } = { z , x } ) ) |
| 25 | prcom | |- { x , z } = { z , x } |
|
| 26 | 25 | a1i | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> { x , z } = { z , x } ) |
| 27 | 21 24 26 | rspcedvd | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> E. y e. V { x , z } = { z , y } ) |
| 28 | preq1 | |- ( Y = z -> { Y , y } = { z , y } ) |
|
| 29 | 14 28 | eqeqan12rd | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> ( ( E ` X ) = { Y , y } <-> { x , z } = { z , y } ) ) |
| 30 | 29 | rexbidv | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> ( E. y e. V ( E ` X ) = { Y , y } <-> E. y e. V { x , z } = { z , y } ) ) |
| 31 | 27 30 | mpbird | |- ( ( Y = z /\ ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) ) -> E. y e. V ( E ` X ) = { Y , y } ) |
| 32 | 31 | ex | |- ( Y = z -> ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 33 | 19 32 | jaoi | |- ( ( Y = x \/ Y = z ) -> ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 34 | elpri | |- ( Y e. { x , z } -> ( Y = x \/ Y = z ) ) |
|
| 35 | 33 34 | syl11 | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> ( Y e. { x , z } -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 36 | 6 35 | sylbid | |- ( ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) /\ ( x =/= z /\ ( E ` X ) = { x , z } ) ) -> ( Y e. ( E ` X ) -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 37 | 36 | ex | |- ( ( ( G e. USGraph /\ X e. dom E ) /\ ( x e. V /\ z e. V ) ) -> ( ( x =/= z /\ ( E ` X ) = { x , z } ) -> ( Y e. ( E ` X ) -> E. y e. V ( E ` X ) = { Y , y } ) ) ) |
| 38 | 37 | rexlimdvva | |- ( ( G e. USGraph /\ X e. dom E ) -> ( E. x e. V E. z e. V ( x =/= z /\ ( E ` X ) = { x , z } ) -> ( Y e. ( E ` X ) -> E. y e. V ( E ` X ) = { Y , y } ) ) ) |
| 39 | 3 38 | mpd | |- ( ( G e. USGraph /\ X e. dom E ) -> ( Y e. ( E ` X ) -> E. y e. V ( E ` X ) = { Y , y } ) ) |
| 40 | 39 | 3impia | |- ( ( G e. USGraph /\ X e. dom E /\ Y e. ( E ` X ) ) -> E. y e. V ( E ` X ) = { Y , y } ) |