This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | |- ( ph -> ( R ` X ) = Y ) |
|
| uptr.r | |- ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
||
| uptr.k | |- ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
||
| uptri.n | |- ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
||
| uptri.z | |- ( ph -> Z ( <. F , G >. ( C UP D ) X ) M ) |
||
| Assertion | uptri | |- ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | |- ( ph -> ( R ` X ) = Y ) |
|
| 2 | uptr.r | |- ( ph -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
|
| 3 | uptr.k | |- ( ph -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
|
| 4 | uptri.n | |- ( ph -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
|
| 5 | uptri.z | |- ( ph -> Z ( <. F , G >. ( C UP D ) X ) M ) |
|
| 6 | 1 | adantr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( R ` X ) = Y ) |
| 7 | 2 | adantr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> R ( ( D Full E ) i^i ( D Faith E ) ) S ) |
| 8 | 3 | adantr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( <. R , S >. o.func <. F , G >. ) = <. K , L >. ) |
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | 5 | adantr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> Z ( <. F , G >. ( C UP D ) X ) M ) |
| 11 | 10 9 | uprcl3 | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> X e. ( Base ` D ) ) |
| 12 | 10 | uprcl2 | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> F ( C Func D ) G ) |
| 13 | 4 | adantr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( ( X S ( F ` Z ) ) ` M ) = N ) |
| 14 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 15 | 10 14 | uprcl5 | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> M e. ( X ( Hom ` D ) ( F ` Z ) ) ) |
| 16 | 6 7 8 9 11 12 13 14 15 | uptr | |- ( ( ph /\ Z ( <. F , G >. ( C UP D ) X ) M ) -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) |
| 17 | 5 16 | mpdan | |- ( ph -> ( Z ( <. F , G >. ( C UP D ) X ) M <-> Z ( <. K , L >. ( C UP E ) Y ) N ) ) |
| 18 | 5 17 | mpbid | |- ( ph -> Z ( <. K , L >. ( C UP E ) Y ) N ) |