This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For an element A of an unordered pair which is a subset of a given set V , there is another (maybe the same) element b of the given set V being an element of the unordered pair. (Contributed by AV, 5-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpr2elpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑋 , 𝑌 } ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( 𝐴 = 𝑋 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) | |
| 2 | preq12 | ⊢ ( ( 𝐴 = 𝑋 ∧ 𝑏 = 𝑌 ) → { 𝐴 , 𝑏 } = { 𝑋 , 𝑌 } ) | |
| 3 | 2 | eqcomd | ⊢ ( ( 𝐴 = 𝑋 ∧ 𝑏 = 𝑌 ) → { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝐴 = 𝑋 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑏 = 𝑌 ) → { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 5 | 1 4 | rspcedeq2vd | ⊢ ( ( 𝐴 = 𝑋 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 6 | 5 | ex | ⊢ ( 𝐴 = 𝑋 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) ) |
| 7 | simprl | ⊢ ( ( 𝐴 = 𝑌 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) | |
| 8 | preq12 | ⊢ ( ( 𝐴 = 𝑌 ∧ 𝑏 = 𝑋 ) → { 𝐴 , 𝑏 } = { 𝑌 , 𝑋 } ) | |
| 9 | prcom | ⊢ { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 } | |
| 10 | 8 9 | eqtr2di | ⊢ ( ( 𝐴 = 𝑌 ∧ 𝑏 = 𝑋 ) → { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝐴 = 𝑌 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ 𝑏 = 𝑋 ) → { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 12 | 7 11 | rspcedeq2vd | ⊢ ( ( 𝐴 = 𝑌 ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |
| 13 | 12 | ex | ⊢ ( 𝐴 = 𝑌 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) ) |
| 14 | 6 13 | jaoi | ⊢ ( ( 𝐴 = 𝑋 ∨ 𝐴 = 𝑌 ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) ) |
| 15 | elpri | ⊢ ( 𝐴 ∈ { 𝑋 , 𝑌 } → ( 𝐴 = 𝑋 ∨ 𝐴 = 𝑌 ) ) | |
| 16 | 14 15 | syl11 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 ∈ { 𝑋 , 𝑌 } → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑋 , 𝑌 } ) → ∃ 𝑏 ∈ 𝑉 { 𝑋 , 𝑌 } = { 𝐴 , 𝑏 } ) |