This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzrunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| nzrunit.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | nzrunit | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrunit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | nzrunit.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 3 2 | nzrnz | ⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 5 | nzrring | ⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) | |
| 6 | 1 2 3 | 0unit | ⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) = 0 ) ) |
| 7 | 6 | necon3bbid | ⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝑅 ∈ NzRing → ( ¬ 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
| 9 | 4 8 | mpbird | ⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝑈 ) |
| 10 | eleq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ∈ 𝑈 ↔ 0 ∈ 𝑈 ) ) | |
| 11 | 10 | notbid | ⊢ ( 𝐴 = 0 → ( ¬ 𝐴 ∈ 𝑈 ↔ ¬ 0 ∈ 𝑈 ) ) |
| 12 | 9 11 | syl5ibrcom | ⊢ ( 𝑅 ∈ NzRing → ( 𝐴 = 0 → ¬ 𝐴 ∈ 𝑈 ) ) |
| 13 | 12 | necon2ad | ⊢ ( 𝑅 ∈ NzRing → ( 𝐴 ∈ 𝑈 → 𝐴 ≠ 0 ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≠ 0 ) |