This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | errn | ⊢ ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
| 2 | ercnv | ⊢ ( 𝑅 Er 𝐴 → ◡ 𝑅 = 𝑅 ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑅 Er 𝐴 → dom ◡ 𝑅 = dom 𝑅 ) |
| 4 | erdm | ⊢ ( 𝑅 Er 𝐴 → dom 𝑅 = 𝐴 ) | |
| 5 | 3 4 | eqtrd | ⊢ ( 𝑅 Er 𝐴 → dom ◡ 𝑅 = 𝐴 ) |
| 6 | 1 5 | eqtrid | ⊢ ( 𝑅 Er 𝐴 → ran 𝑅 = 𝐴 ) |