This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniopn | |- ( ( J e. Top /\ A C_ J ) -> U. A e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg | |- ( J e. Top -> ( J e. Top <-> ( A. x ( x C_ J -> U. x e. J ) /\ A. x e. J A. y e. J ( x i^i y ) e. J ) ) ) |
|
| 2 | 1 | ibi | |- ( J e. Top -> ( A. x ( x C_ J -> U. x e. J ) /\ A. x e. J A. y e. J ( x i^i y ) e. J ) ) |
| 3 | 2 | simpld | |- ( J e. Top -> A. x ( x C_ J -> U. x e. J ) ) |
| 4 | elpw2g | |- ( J e. Top -> ( A e. ~P J <-> A C_ J ) ) |
|
| 5 | 4 | biimpar | |- ( ( J e. Top /\ A C_ J ) -> A e. ~P J ) |
| 6 | sseq1 | |- ( x = A -> ( x C_ J <-> A C_ J ) ) |
|
| 7 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 8 | 7 | eleq1d | |- ( x = A -> ( U. x e. J <-> U. A e. J ) ) |
| 9 | 6 8 | imbi12d | |- ( x = A -> ( ( x C_ J -> U. x e. J ) <-> ( A C_ J -> U. A e. J ) ) ) |
| 10 | 9 | spcgv | |- ( A e. ~P J -> ( A. x ( x C_ J -> U. x e. J ) -> ( A C_ J -> U. A e. J ) ) ) |
| 11 | 5 10 | syl | |- ( ( J e. Top /\ A C_ J ) -> ( A. x ( x C_ J -> U. x e. J ) -> ( A C_ J -> U. A e. J ) ) ) |
| 12 | 11 | com23 | |- ( ( J e. Top /\ A C_ J ) -> ( A C_ J -> ( A. x ( x C_ J -> U. x e. J ) -> U. A e. J ) ) ) |
| 13 | 12 | ex | |- ( J e. Top -> ( A C_ J -> ( A C_ J -> ( A. x ( x C_ J -> U. x e. J ) -> U. A e. J ) ) ) ) |
| 14 | 13 | pm2.43d | |- ( J e. Top -> ( A C_ J -> ( A. x ( x C_ J -> U. x e. J ) -> U. A e. J ) ) ) |
| 15 | 3 14 | mpid | |- ( J e. Top -> ( A C_ J -> U. A e. J ) ) |
| 16 | 15 | imp | |- ( ( J e. Top /\ A C_ J ) -> U. A e. J ) |