This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number arithmetic using Axiom of Choice
unictb
Metamath Proof Explorer
Description: The countable union of countable sets is countable. Theorem 6Q of
Enderton p. 159. See iunctb for indexed union version.
(Contributed by NM , 26-Mar-2006)
Ref
Expression
Assertion
unictb
⊢ A ≼ ω ∧ ∀ x ∈ A x ≼ ω → ⋃ A ≼ ω
Proof
Step
Hyp
Ref
Expression
1
uniiun
⊢ ⋃ A = ⋃ x ∈ A x
2
iunctb
⊢ A ≼ ω ∧ ∀ x ∈ A x ≼ ω → ⋃ x ∈ A x ≼ ω
3
1 2
eqbrtrid
⊢ A ≼ ω ∧ ∀ x ∈ A x ≼ ω → ⋃ A ≼ ω