This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of unexb as of 21-Jul-2025. (Contributed by NM, 11-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexbOLD | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∪ 𝑦 ) ∈ V ↔ ( 𝐴 ∪ 𝑦 ) ∈ V ) ) |
| 3 | uneq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∪ 𝑦 ) ∈ V ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 5 6 | unex | ⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
| 8 | 2 4 7 | vtocl2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 9 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 10 | ssexg | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V ) | |
| 11 | 9 10 | mpan | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → 𝐴 ∈ V ) |
| 12 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 13 | ssexg | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐵 ∈ V ) | |
| 14 | 12 13 | mpan | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → 𝐵 ∈ V ) |
| 15 | 11 14 | jca | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 16 | 8 15 | impbii | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) |