This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of unexg as of 21-Jul-2025. (Contributed by NM, 18-Sep-2006) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexgOLD | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
| 3 | unexb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 4 | 3 | biimpi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |