This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of unexb as of 21-Jul-2025. (Contributed by NM, 11-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexbOLD | |- ( ( A e. _V /\ B e. _V ) <-> ( A u. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 | |- ( x = A -> ( x u. y ) = ( A u. y ) ) |
|
| 2 | 1 | eleq1d | |- ( x = A -> ( ( x u. y ) e. _V <-> ( A u. y ) e. _V ) ) |
| 3 | uneq2 | |- ( y = B -> ( A u. y ) = ( A u. B ) ) |
|
| 4 | 3 | eleq1d | |- ( y = B -> ( ( A u. y ) e. _V <-> ( A u. B ) e. _V ) ) |
| 5 | vex | |- x e. _V |
|
| 6 | vex | |- y e. _V |
|
| 7 | 5 6 | unex | |- ( x u. y ) e. _V |
| 8 | 2 4 7 | vtocl2g | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
| 9 | ssun1 | |- A C_ ( A u. B ) |
|
| 10 | ssexg | |- ( ( A C_ ( A u. B ) /\ ( A u. B ) e. _V ) -> A e. _V ) |
|
| 11 | 9 10 | mpan | |- ( ( A u. B ) e. _V -> A e. _V ) |
| 12 | ssun2 | |- B C_ ( A u. B ) |
|
| 13 | ssexg | |- ( ( B C_ ( A u. B ) /\ ( A u. B ) e. _V ) -> B e. _V ) |
|
| 14 | 12 13 | mpan | |- ( ( A u. B ) e. _V -> B e. _V ) |
| 15 | 11 14 | jca | |- ( ( A u. B ) e. _V -> ( A e. _V /\ B e. _V ) ) |
| 16 | 8 15 | impbii | |- ( ( A e. _V /\ B e. _V ) <-> ( A u. B ) e. _V ) |