This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality involving class union and class difference. The first equality of Exercise 13 of TakeutiZaring p. 22. (Contributed by Alan Sare, 17-Apr-2012) (Proof shortened by JJ, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif3 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐶 ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 2 | pm4.53 | ⊢ ( ¬ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) | |
| 3 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 4 | 2 3 | xchnxbir | ⊢ ( ¬ 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) |
| 5 | 1 4 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) |
| 6 | eldif | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐶 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ ¬ 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) | |
| 7 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 8 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 9 | 8 | orbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 10 | ordi | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) ) | |
| 11 | orcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ↔ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) |
| 13 | 10 12 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) |
| 14 | 7 9 13 | 3bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴 ) ) ) |
| 15 | 5 6 14 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐶 ∖ 𝐴 ) ) ) |
| 16 | 15 | eqriv | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐶 ∖ 𝐴 ) ) |