This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrupgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | isumgr | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ UMGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 4 | id | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 5 | 2re | ⊢ 2 ∈ ℝ | |
| 6 | 5 | leidi | ⊢ 2 ≤ 2 |
| 7 | 6 | a1i | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → 2 ≤ 2 ) |
| 8 | breq1 | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ 2 ≤ 2 ) ) | |
| 9 | 7 8 | mpbird | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ♯ ‘ 𝑥 ) ≤ 2 ) |
| 10 | 9 | a1i | ⊢ ( 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( ♯ ‘ 𝑥 ) = 2 → ( ♯ ‘ 𝑥 ) ≤ 2 ) ) |
| 11 | 10 | ss2rabi | ⊢ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } |
| 12 | 11 | a1i | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 13 | 4 12 | fssd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 14 | 3 13 | biimtrdi | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 15 | 14 | pm2.43i | ⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 16 | 1 2 | isupgr | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 17 | 15 16 | mpbird | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) |