This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union U of two multigraphs G and H with the same vertex set V is a multigraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | |
| umgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) | ||
| umgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| umgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| umgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| umgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| umgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| umgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| umgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| umgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | ||
| Assertion | umgrun | ⊢ ( 𝜑 → 𝑈 ∈ UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | |
| 2 | umgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) | |
| 3 | umgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | umgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | umgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | umgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | umgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | umgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 9 | umgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 10 | umgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | |
| 11 | 5 3 | umgrf | ⊢ ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 14 | 13 4 | umgrf | ⊢ ( 𝐻 ∈ UMGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 16 | 6 | eqcomd | ⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 𝐻 ) ) |
| 17 | 16 | pweqd | ⊢ ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) ) |
| 18 | 17 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 | 18 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 20 | 15 19 | mpbird | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 21 | 12 20 7 | fun2d | ⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 22 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸 ∪ 𝐹 ) ) |
| 23 | dmun | ⊢ dom ( 𝐸 ∪ 𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 ) | |
| 24 | 22 23 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) ) |
| 25 | 9 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 ) |
| 26 | 25 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 27 | 10 24 26 | feq123d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 28 | 21 27 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 29 | eqid | ⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) | |
| 30 | eqid | ⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) | |
| 31 | 29 30 | isumgrs | ⊢ ( 𝑈 ∈ 𝑊 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 32 | 8 31 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 33 | 28 32 | mpbird | ⊢ ( 𝜑 → 𝑈 ∈ UMGraph ) |