This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrn1cycl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | umgrislfupgr | ⊢ ( 𝐺 ∈ UMGraph ↔ ( 𝐺 ∈ UPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 4 | 1 2 | lfgrn1cycl | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 5 | 3 4 | simplbiim | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) |