This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | umgrn1cycl | |- ( ( G e. UMGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | umgrislfupgr | |- ( G e. UMGraph <-> ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
| 4 | 1 2 | lfgrn1cycl | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |
| 5 | 3 4 | simplbiim | |- ( G e. UMGraph -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |
| 6 | 5 | imp | |- ( ( G e. UMGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 1 ) |