This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfgrn1cycl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| lfgrn1cycl.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | lfgrn1cycl | ⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfgrn1cycl.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | lfgrn1cycl.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | cyclprop | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 4 | cycliswlk | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 5 | 2 1 | lfgrwlknloop | ⊢ ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 6 | 1nn | ⊢ 1 ∈ ℕ | |
| 7 | eleq1 | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 9 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 12 | fv0p1e1 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 13 | 11 12 | neeq12d | ⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 14 | 13 | rspcv | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 15 | 10 14 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 16 | 15 | impcom | ⊢ ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 17 | fveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 18 | 17 | neeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 20 | 16 19 | mpbird | ⊢ ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ♯ ‘ 𝐹 ) = 1 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 21 | 20 | ex | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( ♯ ‘ 𝐹 ) = 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 22 | 21 | necon2d | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 23 | 5 22 | syl | ⊢ ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 24 | 23 | ex | ⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) ) |
| 25 | 24 | com13 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) ) |
| 27 | 3 4 26 | sylc | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |
| 28 | 27 | com12 | ⊢ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ≠ 1 ) ) |