This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a simple graph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | usgr2edg | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 4 | 1 2 | umgr2edg | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 5 | 3 4 | sylanl1 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |