This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
| usgrf1oedg.e | |- E = ( Edg ` G ) |
||
| Assertion | umgr2edg | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> E. x e. dom I E. y e. dom I ( x =/= y /\ N e. ( I ` x ) /\ N e. ( I ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
| 2 | usgrf1oedg.e | |- E = ( Edg ` G ) |
|
| 3 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 4 | 3 | anim1i | |- ( ( G e. UMGraph /\ A =/= B ) -> ( G e. UHGraph /\ A =/= B ) ) |
| 5 | 4 | adantr | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> ( G e. UHGraph /\ A =/= B ) ) |
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | 6 2 | umgrpredgv | |- ( ( G e. UMGraph /\ { N , A } e. E ) -> ( N e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) |
| 8 | 7 | ad2ant2r | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> ( N e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) |
| 9 | 8 | simprd | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> A e. ( Vtx ` G ) ) |
| 10 | 6 2 | umgrpredgv | |- ( ( G e. UMGraph /\ { B , N } e. E ) -> ( B e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 11 | 10 | ad2ant2rl | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> ( B e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 12 | 11 | simpld | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> B e. ( Vtx ` G ) ) |
| 13 | 8 | simpld | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> N e. ( Vtx ` G ) ) |
| 14 | simpr | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> ( { N , A } e. E /\ { B , N } e. E ) ) |
|
| 15 | 1 2 6 | uhgr2edg | |- ( ( ( G e. UHGraph /\ A =/= B ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> E. x e. dom I E. y e. dom I ( x =/= y /\ N e. ( I ` x ) /\ N e. ( I ` y ) ) ) |
| 16 | 5 9 12 13 14 15 | syl131anc | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> E. x e. dom I E. y e. dom I ( x =/= y /\ N e. ( I ` x ) /\ N e. ( I ` y ) ) ) |