This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmpm | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmf | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 2 | uzssz | ⊢ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ | |
| 3 | ovex | ⊢ ( ℂ ↑m 𝑆 ) ∈ V | |
| 4 | zex | ⊢ ℤ ∈ V | |
| 5 | elpm2r | ⊢ ( ( ( ( ℂ ↑m 𝑆 ) ∈ V ∧ ℤ ∈ V ) ∧ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) | |
| 6 | 3 4 5 | mpanl12 | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 7 | 2 6 | mpan2 | ⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐹 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |