This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmpm | |- ( F ( ~~>u ` S ) G -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmf | |- ( F ( ~~>u ` S ) G -> E. n e. ZZ F : ( ZZ>= ` n ) --> ( CC ^m S ) ) |
|
| 2 | uzssz | |- ( ZZ>= ` n ) C_ ZZ |
|
| 3 | ovex | |- ( CC ^m S ) e. _V |
|
| 4 | zex | |- ZZ e. _V |
|
| 5 | elpm2r | |- ( ( ( ( CC ^m S ) e. _V /\ ZZ e. _V ) /\ ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ ( ZZ>= ` n ) C_ ZZ ) ) -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
|
| 6 | 3 4 5 | mpanl12 | |- ( ( F : ( ZZ>= ` n ) --> ( CC ^m S ) /\ ( ZZ>= ` n ) C_ ZZ ) -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
| 7 | 2 6 | mpan2 | |- ( F : ( ZZ>= ` n ) --> ( CC ^m S ) -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
| 8 | 7 | rexlimivw | |- ( E. n e. ZZ F : ( ZZ>= ` n ) --> ( CC ^m S ) -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
| 9 | 1 8 | syl | |- ( F ( ~~>u ` S ) G -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |