This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmcau2
Metamath Proof Explorer
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy,
which is to say that for every 0 < x there is a j such that for
all j <_ k , m the functions F ( k ) and F ( m ) are
uniformly within x of each other on S . (Contributed by Mario
Carneiro , 1-Mar-2015)
Ref
Expression
Hypotheses
ulmcau.z
⊢ Z = ℤ ≥ M
ulmcau.m
⊢ φ → M ∈ ℤ
ulmcau.s
⊢ φ → S ∈ V
ulmcau.f
⊢ φ → F : Z ⟶ ℂ S
Assertion
ulmcau2
⊢ φ → F ∈ dom ⁡ ⇝ u ⁡ S ↔ ∀ x ∈ ℝ + ∃ j ∈ Z ∀ k ∈ ℤ ≥ j ∀ m ∈ ℤ ≥ k ∀ z ∈ S F ⁡ k ⁡ z − F ⁡ m ⁡ z < x
Proof
Step
Hyp
Ref
Expression
1
ulmcau.z
⊢ Z = ℤ ≥ M
2
ulmcau.m
⊢ φ → M ∈ ℤ
3
ulmcau.s
⊢ φ → S ∈ V
4
ulmcau.f
⊢ φ → F : Z ⟶ ℂ S
5
1 2 3 4
ulmcau
⊢ φ → F ∈ dom ⁡ ⇝ u ⁡ S ↔ ∀ x ∈ ℝ + ∃ j ∈ Z ∀ k ∈ ℤ ≥ j ∀ z ∈ S F ⁡ k ⁡ z − F ⁡ j ⁡ z < x
6
1 2 3 4
ulmcaulem
⊢ φ → ∀ x ∈ ℝ + ∃ j ∈ Z ∀ k ∈ ℤ ≥ j ∀ z ∈ S F ⁡ k ⁡ z − F ⁡ j ⁡ z < x ↔ ∀ x ∈ ℝ + ∃ j ∈ Z ∀ k ∈ ℤ ≥ j ∀ m ∈ ℤ ≥ k ∀ z ∈ S F ⁡ k ⁡ z − F ⁡ m ⁡ z < x
7
5 6
bitrd
⊢ φ → F ∈ dom ⁡ ⇝ u ⁡ S ↔ ∀ x ∈ ℝ + ∃ j ∈ Z ∀ k ∈ ℤ ≥ j ∀ m ∈ ℤ ≥ k ∀ z ∈ S F ⁡ k ⁡ z − F ⁡ m ⁡ z < x