This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two (undirected) hypergraphs (with the same vertex set) represented as ordered pair: If <. V , E >. and <. V , F >. are hypergraphs, then <. V , E u. F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices). (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| uhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | ||
| uhgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| uhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| uhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| uhgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| Assertion | uhgrunop | ⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 2 | uhgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UHGraph ) | |
| 3 | uhgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | uhgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | uhgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | uhgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | uhgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | opex | ⊢ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V ) |
| 10 | 5 | fvexi | ⊢ 𝑉 ∈ V |
| 11 | 3 | fvexi | ⊢ 𝐸 ∈ V |
| 12 | 4 | fvexi | ⊢ 𝐹 ∈ V |
| 13 | 11 12 | unex | ⊢ ( 𝐸 ∪ 𝐹 ) ∈ V |
| 14 | 10 13 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 15 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) |
| 17 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) | |
| 18 | 14 17 | mp1i | ⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) |
| 19 | 1 2 3 4 5 6 7 9 16 18 | uhgrun | ⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UHGraph ) |