This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union U of two (undirected) hypergraphs G and H with the same vertex set V is a hypergraph with the vertex set V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrun.g | |- ( ph -> G e. UHGraph ) |
|
| uhgrun.h | |- ( ph -> H e. UHGraph ) |
||
| uhgrun.e | |- E = ( iEdg ` G ) |
||
| uhgrun.f | |- F = ( iEdg ` H ) |
||
| uhgrun.vg | |- V = ( Vtx ` G ) |
||
| uhgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
| uhgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
||
| uhgrun.u | |- ( ph -> U e. W ) |
||
| uhgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
||
| uhgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
||
| Assertion | uhgrun | |- ( ph -> U e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrun.g | |- ( ph -> G e. UHGraph ) |
|
| 2 | uhgrun.h | |- ( ph -> H e. UHGraph ) |
|
| 3 | uhgrun.e | |- E = ( iEdg ` G ) |
|
| 4 | uhgrun.f | |- F = ( iEdg ` H ) |
|
| 5 | uhgrun.vg | |- V = ( Vtx ` G ) |
|
| 6 | uhgrun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
| 7 | uhgrun.i | |- ( ph -> ( dom E i^i dom F ) = (/) ) |
|
| 8 | uhgrun.u | |- ( ph -> U e. W ) |
|
| 9 | uhgrun.v | |- ( ph -> ( Vtx ` U ) = V ) |
|
| 10 | uhgrun.un | |- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
|
| 11 | 5 3 | uhgrf | |- ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) ) |
| 12 | 1 11 | syl | |- ( ph -> E : dom E --> ( ~P V \ { (/) } ) ) |
| 13 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 14 | 13 4 | uhgrf | |- ( H e. UHGraph -> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) |
| 15 | 2 14 | syl | |- ( ph -> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) |
| 16 | 6 | eqcomd | |- ( ph -> V = ( Vtx ` H ) ) |
| 17 | 16 | pweqd | |- ( ph -> ~P V = ~P ( Vtx ` H ) ) |
| 18 | 17 | difeq1d | |- ( ph -> ( ~P V \ { (/) } ) = ( ~P ( Vtx ` H ) \ { (/) } ) ) |
| 19 | 18 | feq3d | |- ( ph -> ( F : dom F --> ( ~P V \ { (/) } ) <-> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) ) |
| 20 | 15 19 | mpbird | |- ( ph -> F : dom F --> ( ~P V \ { (/) } ) ) |
| 21 | 12 20 7 | fun2d | |- ( ph -> ( E u. F ) : ( dom E u. dom F ) --> ( ~P V \ { (/) } ) ) |
| 22 | 10 | dmeqd | |- ( ph -> dom ( iEdg ` U ) = dom ( E u. F ) ) |
| 23 | dmun | |- dom ( E u. F ) = ( dom E u. dom F ) |
|
| 24 | 22 23 | eqtrdi | |- ( ph -> dom ( iEdg ` U ) = ( dom E u. dom F ) ) |
| 25 | 9 | pweqd | |- ( ph -> ~P ( Vtx ` U ) = ~P V ) |
| 26 | 25 | difeq1d | |- ( ph -> ( ~P ( Vtx ` U ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
| 27 | 10 24 26 | feq123d | |- ( ph -> ( ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) <-> ( E u. F ) : ( dom E u. dom F ) --> ( ~P V \ { (/) } ) ) ) |
| 28 | 21 27 | mpbird | |- ( ph -> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) |
| 29 | eqid | |- ( Vtx ` U ) = ( Vtx ` U ) |
|
| 30 | eqid | |- ( iEdg ` U ) = ( iEdg ` U ) |
|
| 31 | 29 30 | isuhgr | |- ( U e. W -> ( U e. UHGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) ) |
| 32 | 8 31 | syl | |- ( ph -> ( U e. UHGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) ) |
| 33 | 28 32 | mpbird | |- ( ph -> U e. UHGraph ) |