This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrsubgrself | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) | |
| 2 | ssid | ⊢ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | 4 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 6 | id | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph ) | |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 7 7 4 4 | uhgrissubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ Fun ( iEdg ‘ 𝐺 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝐺 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 9 | 5 6 8 | mpd3an23 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝐺 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 10 | 3 9 | mpbiri | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 SubGraph 𝐺 ) |