This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrsubgrself | |- ( G e. UHGraph -> G SubGraph G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ( Vtx ` G ) C_ ( Vtx ` G ) |
|
| 2 | ssid | |- ( iEdg ` G ) C_ ( iEdg ` G ) |
|
| 3 | 1 2 | pm3.2i | |- ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) |
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | 4 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 6 | id | |- ( G e. UHGraph -> G e. UHGraph ) |
|
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | 7 7 4 4 | uhgrissubgr | |- ( ( G e. UHGraph /\ Fun ( iEdg ` G ) /\ G e. UHGraph ) -> ( G SubGraph G <-> ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) ) ) |
| 9 | 5 6 8 | mpd3an23 | |- ( G e. UHGraph -> ( G SubGraph G <-> ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) ) ) |
| 10 | 3 9 | mpbiri | |- ( G e. UHGraph -> G SubGraph G ) |