This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring ( ph -> G Struct X ) , it would be sufficient to require ( ph -> Fun ( G \ { (/) } ) ) and ( ph -> G e. _V ) . (Contributed by AV, 18-Jan-2020) (Revised by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrstrrepe.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| uhgrstrrepe.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | ||
| uhgrstrrepe.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | ||
| uhgrstrrepe.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | ||
| uhgrstrrepe.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| uhgrstrrepe.e | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) | ||
| Assertion | uhgrstrrepe | ⊢ ( 𝜑 → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrstrrepe.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 2 | uhgrstrrepe.i | ⊢ 𝐼 = ( .ef ‘ ndx ) | |
| 3 | uhgrstrrepe.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 4 | uhgrstrrepe.b | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) | |
| 5 | uhgrstrrepe.w | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 6 | uhgrstrrepe.e | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) | |
| 7 | 2 3 4 5 | setsvtx | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ 𝐺 ) ) |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝑉 ) |
| 9 | 8 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝒫 𝑉 ) |
| 10 | 9 | difeq1d | ⊢ ( 𝜑 → ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 11 | 10 | feq3d | ⊢ ( 𝜑 → ( 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) ) |
| 12 | 6 11 | mpbird | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ) |
| 13 | 2 3 4 5 | setsiedg | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = 𝐸 ) |
| 14 | 13 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = dom 𝐸 ) |
| 15 | 13 14 | feq12d | ⊢ ( 𝜑 → ( ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ↔ 𝐸 : dom 𝐸 ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ) ) |
| 16 | 12 15 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ) |
| 17 | ovex | ⊢ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ V | |
| 18 | eqid | ⊢ ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) | |
| 19 | eqid | ⊢ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) | |
| 20 | 18 19 | isuhgr | ⊢ ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ V → ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ UHGraph ↔ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ) ) |
| 21 | 17 20 | mp1i | ⊢ ( 𝜑 → ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ UHGraph ↔ ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) : dom ( iEdg ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ⟶ ( 𝒫 ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ∖ { ∅ } ) ) ) |
| 22 | 16 21 | mpbird | ⊢ ( 𝜑 → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∈ UHGraph ) |