This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring ( ph -> G Struct X ) , it would be sufficient to require ( ph -> Fun ( G \ { (/) } ) ) and ( ph -> G e. _V ) . (Contributed by AV, 18-Jan-2020) (Revised by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrstrrepe.v | |- V = ( Base ` G ) |
|
| uhgrstrrepe.i | |- I = ( .ef ` ndx ) |
||
| uhgrstrrepe.s | |- ( ph -> G Struct X ) |
||
| uhgrstrrepe.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
||
| uhgrstrrepe.w | |- ( ph -> E e. W ) |
||
| uhgrstrrepe.e | |- ( ph -> E : dom E --> ( ~P V \ { (/) } ) ) |
||
| Assertion | uhgrstrrepe | |- ( ph -> ( G sSet <. I , E >. ) e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrstrrepe.v | |- V = ( Base ` G ) |
|
| 2 | uhgrstrrepe.i | |- I = ( .ef ` ndx ) |
|
| 3 | uhgrstrrepe.s | |- ( ph -> G Struct X ) |
|
| 4 | uhgrstrrepe.b | |- ( ph -> ( Base ` ndx ) e. dom G ) |
|
| 5 | uhgrstrrepe.w | |- ( ph -> E e. W ) |
|
| 6 | uhgrstrrepe.e | |- ( ph -> E : dom E --> ( ~P V \ { (/) } ) ) |
|
| 7 | 2 3 4 5 | setsvtx | |- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` G ) ) |
| 8 | 7 1 | eqtr4di | |- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = V ) |
| 9 | 8 | pweqd | |- ( ph -> ~P ( Vtx ` ( G sSet <. I , E >. ) ) = ~P V ) |
| 10 | 9 | difeq1d | |- ( ph -> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
| 11 | 10 | feq3d | |- ( ph -> ( E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
| 12 | 6 11 | mpbird | |- ( ph -> E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) |
| 13 | 2 3 4 5 | setsiedg | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) = E ) |
| 14 | 13 | dmeqd | |- ( ph -> dom ( iEdg ` ( G sSet <. I , E >. ) ) = dom E ) |
| 15 | 13 14 | feq12d | |- ( ph -> ( ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) <-> E : dom E --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 16 | 12 15 | mpbird | |- ( ph -> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) |
| 17 | ovex | |- ( G sSet <. I , E >. ) e. _V |
|
| 18 | eqid | |- ( Vtx ` ( G sSet <. I , E >. ) ) = ( Vtx ` ( G sSet <. I , E >. ) ) |
|
| 19 | eqid | |- ( iEdg ` ( G sSet <. I , E >. ) ) = ( iEdg ` ( G sSet <. I , E >. ) ) |
|
| 20 | 18 19 | isuhgr | |- ( ( G sSet <. I , E >. ) e. _V -> ( ( G sSet <. I , E >. ) e. UHGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 21 | 17 20 | mp1i | |- ( ph -> ( ( G sSet <. I , E >. ) e. UHGraph <-> ( iEdg ` ( G sSet <. I , E >. ) ) : dom ( iEdg ` ( G sSet <. I , E >. ) ) --> ( ~P ( Vtx ` ( G sSet <. I , E >. ) ) \ { (/) } ) ) ) |
| 22 | 16 21 | mpbird | |- ( ph -> ( G sSet <. I , E >. ) e. UHGraph ) |