This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph of order 0 (i.e. with 0 vertices) has a finite set of edges. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0edgfi | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 0 ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | uhgr0vsize0 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 0 ) → ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ) |
| 4 | fvex | ⊢ ( Edg ‘ 𝐺 ) ∈ V | |
| 5 | hasheq0 | ⊢ ( ( Edg ‘ 𝐺 ) ∈ V → ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
| 7 | 0fi | ⊢ ∅ ∈ Fin | |
| 8 | eleq1 | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 10 | 6 9 | sylbi | ⊢ ( ( ♯ ‘ ( Edg ‘ 𝐺 ) ) = 0 → ( Edg ‘ 𝐺 ) ∈ Fin ) |
| 11 | 3 10 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 0 ) → ( Edg ‘ 𝐺 ) ∈ Fin ) |