This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph of order 0 (i.e. with 0 vertices) has a finite set of edges. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0edgfi | |- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( Edg ` G ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | uhgr0vsize0 | |- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( # ` ( Edg ` G ) ) = 0 ) |
| 4 | fvex | |- ( Edg ` G ) e. _V |
|
| 5 | hasheq0 | |- ( ( Edg ` G ) e. _V -> ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) |
| 7 | 0fi | |- (/) e. Fin |
|
| 8 | eleq1 | |- ( ( Edg ` G ) = (/) -> ( ( Edg ` G ) e. Fin <-> (/) e. Fin ) ) |
|
| 9 | 7 8 | mpbiri | |- ( ( Edg ` G ) = (/) -> ( Edg ` G ) e. Fin ) |
| 10 | 6 9 | sylbi | |- ( ( # ` ( Edg ` G ) ) = 0 -> ( Edg ` G ) e. Fin ) |
| 11 | 3 10 | syl | |- ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( Edg ` G ) e. Fin ) |