This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgr0e.g | |- ( ph -> G e. W ) |
|
| uhgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
||
| Assertion | uhgr0e | |- ( ph -> G e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgr0e.g | |- ( ph -> G e. W ) |
|
| 2 | uhgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
|
| 3 | f0 | |- (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
|
| 4 | dm0 | |- dom (/) = (/) |
|
| 5 | 4 | feq2i | |- ( (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 6 | 3 5 | mpbir | |- (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 9 | 7 8 | isuhgr | |- ( G e. W -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 10 | 1 9 | syl | |- ( ph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 11 | id | |- ( ( iEdg ` G ) = (/) -> ( iEdg ` G ) = (/) ) |
|
| 12 | dmeq | |- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) |
|
| 13 | 11 12 | feq12d | |- ( ( iEdg ` G ) = (/) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 14 | 2 13 | syl | |- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 15 | 10 14 | bitrd | |- ( ph -> ( G e. UHGraph <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 16 | 6 15 | mpbiri | |- ( ph -> G e. UHGraph ) |