This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.12i | |- ( B =/= (/) -> ( ( F ` A ) = B -> A F B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( F ` A ) e. _V |
|
| 2 | neeq1 | |- ( ( F ` A ) = y -> ( ( F ` A ) =/= (/) <-> y =/= (/) ) ) |
|
| 3 | tz6.12-2 | |- ( -. E! y A F y -> ( F ` A ) = (/) ) |
|
| 4 | 3 | necon1ai | |- ( ( F ` A ) =/= (/) -> E! y A F y ) |
| 5 | tz6.12c | |- ( E! y A F y -> ( ( F ` A ) = y <-> A F y ) ) |
|
| 6 | 4 5 | syl | |- ( ( F ` A ) =/= (/) -> ( ( F ` A ) = y <-> A F y ) ) |
| 7 | 6 | biimpcd | |- ( ( F ` A ) = y -> ( ( F ` A ) =/= (/) -> A F y ) ) |
| 8 | 2 7 | sylbird | |- ( ( F ` A ) = y -> ( y =/= (/) -> A F y ) ) |
| 9 | 8 | eqcoms | |- ( y = ( F ` A ) -> ( y =/= (/) -> A F y ) ) |
| 10 | neeq1 | |- ( y = ( F ` A ) -> ( y =/= (/) <-> ( F ` A ) =/= (/) ) ) |
|
| 11 | breq2 | |- ( y = ( F ` A ) -> ( A F y <-> A F ( F ` A ) ) ) |
|
| 12 | 9 10 11 | 3imtr3d | |- ( y = ( F ` A ) -> ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) ) |
| 13 | 1 12 | vtocle | |- ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) |
| 14 | 13 | a1i | |- ( ( F ` A ) = B -> ( ( F ` A ) =/= (/) -> A F ( F ` A ) ) ) |
| 15 | neeq1 | |- ( ( F ` A ) = B -> ( ( F ` A ) =/= (/) <-> B =/= (/) ) ) |
|
| 16 | breq2 | |- ( ( F ` A ) = B -> ( A F ( F ` A ) <-> A F B ) ) |
|
| 17 | 14 15 16 | 3imtr3d | |- ( ( F ` A ) = B -> ( B =/= (/) -> A F B ) ) |
| 18 | 17 | com12 | |- ( B =/= (/) -> ( ( F ` A ) = B -> A F B ) ) |