This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tus | ⊢ toUnifSp = ( 𝑢 ∈ ∪ ran UnifOn ↦ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctus | ⊢ toUnifSp | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cust | ⊢ UnifOn | |
| 3 | 2 | crn | ⊢ ran UnifOn |
| 4 | 3 | cuni | ⊢ ∪ ran UnifOn |
| 5 | cbs | ⊢ Base | |
| 6 | cnx | ⊢ ndx | |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ ndx ) |
| 8 | 1 | cv | ⊢ 𝑢 |
| 9 | 8 | cuni | ⊢ ∪ 𝑢 |
| 10 | 9 | cdm | ⊢ dom ∪ 𝑢 |
| 11 | 7 10 | cop | ⊢ 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 |
| 12 | cunif | ⊢ UnifSet | |
| 13 | 6 12 | cfv | ⊢ ( UnifSet ‘ ndx ) |
| 14 | 13 8 | cop | ⊢ 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 |
| 15 | 11 14 | cpr | ⊢ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } |
| 16 | csts | ⊢ sSet | |
| 17 | cts | ⊢ TopSet | |
| 18 | 6 17 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 19 | cutop | ⊢ unifTop | |
| 20 | 8 19 | cfv | ⊢ ( unifTop ‘ 𝑢 ) |
| 21 | 18 20 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 |
| 22 | 15 21 16 | co | ⊢ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) |
| 23 | 1 4 22 | cmpt | ⊢ ( 𝑢 ∈ ∪ ran UnifOn ↦ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) ) |
| 24 | 0 23 | wceq | ⊢ toUnifSp = ( 𝑢 ∈ ∪ ran UnifOn ↦ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) ) |