This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrcleq | ⊢ ( 𝑅 = 𝑆 → t++ 𝑅 = t++ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) ) | |
| 2 | 1 | ralbidv | ⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ↔ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) ) |
| 3 | 2 | 3anbi3d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) ) ) |
| 5 | 4 | rexbidv | ⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) ↔ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) ) ) |
| 6 | 5 | opabbidv | ⊢ ( 𝑅 = 𝑆 → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) } ) |
| 7 | df-ttrcl | ⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } | |
| 8 | df-ttrcl | ⊢ t++ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc 𝑚 ) ) } | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝑅 = 𝑆 → t++ 𝑅 = t++ 𝑆 ) |