This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrcleq | |- ( R = S -> t++ R = t++ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | |- ( R = S -> ( ( f ` m ) R ( f ` suc m ) <-> ( f ` m ) S ( f ` suc m ) ) ) |
|
| 2 | 1 | ralbidv | |- ( R = S -> ( A. m e. n ( f ` m ) R ( f ` suc m ) <-> A. m e. n ( f ` m ) S ( f ` suc m ) ) ) |
| 3 | 2 | 3anbi3d | |- ( R = S -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 4 | 3 | exbidv | |- ( R = S -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 5 | 4 | rexbidv | |- ( R = S -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) ) ) |
| 6 | 5 | opabbidv | |- ( R = S -> { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } ) |
| 7 | df-ttrcl | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |
|
| 8 | df-ttrcl | |- t++ S = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) S ( f ` suc m ) ) } |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( R = S -> t++ R = t++ S ) |