This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eltsms.b | |- B = ( Base ` G ) |
|
| eltsms.j | |- J = ( TopOpen ` G ) |
||
| eltsms.s | |- S = ( ~P A i^i Fin ) |
||
| eltsms.1 | |- ( ph -> G e. CMnd ) |
||
| eltsms.2 | |- ( ph -> G e. TopSp ) |
||
| eltsms.a | |- ( ph -> A e. V ) |
||
| eltsms.f | |- ( ph -> F : A --> B ) |
||
| tsmsi.3 | |- ( ph -> C e. ( G tsums F ) ) |
||
| tsmsi.4 | |- ( ph -> U e. J ) |
||
| tsmsi.5 | |- ( ph -> C e. U ) |
||
| Assertion | tsmsi | |- ( ph -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltsms.b | |- B = ( Base ` G ) |
|
| 2 | eltsms.j | |- J = ( TopOpen ` G ) |
|
| 3 | eltsms.s | |- S = ( ~P A i^i Fin ) |
|
| 4 | eltsms.1 | |- ( ph -> G e. CMnd ) |
|
| 5 | eltsms.2 | |- ( ph -> G e. TopSp ) |
|
| 6 | eltsms.a | |- ( ph -> A e. V ) |
|
| 7 | eltsms.f | |- ( ph -> F : A --> B ) |
|
| 8 | tsmsi.3 | |- ( ph -> C e. ( G tsums F ) ) |
|
| 9 | tsmsi.4 | |- ( ph -> U e. J ) |
|
| 10 | tsmsi.5 | |- ( ph -> C e. U ) |
|
| 11 | eleq2 | |- ( u = U -> ( C e. u <-> C e. U ) ) |
|
| 12 | eleq2 | |- ( u = U -> ( ( G gsum ( F |` y ) ) e. u <-> ( G gsum ( F |` y ) ) e. U ) ) |
|
| 13 | 12 | imbi2d | |- ( u = U -> ( ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) <-> ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) ) |
| 14 | 13 | rexralbidv | |- ( u = U -> ( E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) <-> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) ) |
| 15 | 11 14 | imbi12d | |- ( u = U -> ( ( C e. u -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) <-> ( C e. U -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) ) ) |
| 16 | 1 2 3 4 5 6 7 | eltsms | |- ( ph -> ( C e. ( G tsums F ) <-> ( C e. B /\ A. u e. J ( C e. u -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) ) ) |
| 17 | 8 16 | mpbid | |- ( ph -> ( C e. B /\ A. u e. J ( C e. u -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) ) |
| 18 | 17 | simprd | |- ( ph -> A. u e. J ( C e. u -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. u ) ) ) |
| 19 | 15 18 9 | rspcdva | |- ( ph -> ( C e. U -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) ) |
| 20 | 10 19 | mpd | |- ( ph -> E. z e. S A. y e. S ( z C_ y -> ( G gsum ( F |` y ) ) e. U ) ) |