This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskurn | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ∪ ran 𝐹 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝑇 ∈ Tarski ) | |
| 2 | simp1r | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → Tr 𝑇 ) | |
| 3 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → ran 𝐹 ⊆ 𝑇 ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ⊆ 𝑇 ) |
| 5 | tskwe2 | ⊢ ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card ) | |
| 6 | 1 5 | syl | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝑇 ∈ dom card ) |
| 7 | simp2 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ∈ 𝑇 ) | |
| 8 | trss | ⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇 ) ) | |
| 9 | 2 7 8 | sylc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
| 10 | ssnum | ⊢ ( ( 𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇 ) → 𝐴 ∈ dom card ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ∈ dom card ) |
| 12 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → 𝐹 Fn 𝐴 ) | |
| 13 | dffn4 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 16 | fodomnum | ⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ ran 𝐹 → ran 𝐹 ≼ 𝐴 ) ) | |
| 17 | 11 15 16 | sylc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ≼ 𝐴 ) |
| 18 | tsksdom | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) | |
| 19 | 1 7 18 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ≺ 𝑇 ) |
| 20 | domsdomtr | ⊢ ( ( ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇 ) → ran 𝐹 ≺ 𝑇 ) | |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ≺ 𝑇 ) |
| 22 | tskssel | ⊢ ( ( 𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇 ) → ran 𝐹 ∈ 𝑇 ) | |
| 23 | 1 4 21 22 | syl3anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ∈ 𝑇 ) |
| 24 | tskuni | ⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇 ) → ∪ ran 𝐹 ∈ 𝑇 ) | |
| 25 | 1 2 23 24 | syl3anc | ⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ∪ ran 𝐹 ∈ 𝑇 ) |