This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsksuc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ∈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) | |
| 2 | tskpw | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
| 4 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → Ord 𝐴 ) |
| 6 | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) | |
| 7 | eqimss | ⊢ ( ∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴 ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → ∪ suc 𝐴 ⊆ 𝐴 ) |
| 9 | sspwuni | ⊢ ( suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ⊆ 𝒫 𝐴 ) |
| 11 | tskss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴 ) → suc 𝐴 ∈ 𝑇 ) | |
| 12 | 1 3 10 11 | syl3anc | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ∈ 𝑇 ) |