This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsksuc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ||
| 2 | tskpw | ||
| 3 | 2 | 3adant2 | |
| 4 | eloni | ||
| 5 | 4 | 3ad2ant2 | |
| 6 | ordunisuc | ||
| 7 | eqimss | ||
| 8 | 5 6 7 | 3syl | |
| 9 | sspwuni | ||
| 10 | 8 9 | sylibr | |
| 11 | tskss | ||
| 12 | 1 3 10 11 | syl3anc |