This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsksuc | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> T e. Tarski ) |
|
| 2 | tskpw | |- ( ( T e. Tarski /\ A e. T ) -> ~P A e. T ) |
|
| 3 | 2 | 3adant2 | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> ~P A e. T ) |
| 4 | eloni | |- ( A e. On -> Ord A ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> Ord A ) |
| 6 | ordunisuc | |- ( Ord A -> U. suc A = A ) |
|
| 7 | eqimss | |- ( U. suc A = A -> U. suc A C_ A ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> U. suc A C_ A ) |
| 9 | sspwuni | |- ( suc A C_ ~P A <-> U. suc A C_ A ) |
|
| 10 | 8 9 | sylibr | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A C_ ~P A ) |
| 11 | tskss | |- ( ( T e. Tarski /\ ~P A e. T /\ suc A C_ ~P A ) -> suc A e. T ) |
|
| 12 | 1 3 10 11 | syl3anc | |- ( ( T e. Tarski /\ A e. On /\ A e. T ) -> suc A e. T ) |