This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Transitive classes
truni
Metamath Proof Explorer
Description: The union of a class of transitive sets is transitive. Exercise 5(a) of
Enderton p. 73. (Contributed by Scott Fenton , 21-Feb-2011) (Proof
shortened by Mario Carneiro , 26-Apr-2014)
Ref
Expression
Assertion
truni
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋃ A
Proof
Step
Hyp
Ref
Expression
1
triun
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋃ x ∈ A x
2
uniiun
⊢ ⋃ A = ⋃ x ∈ A x
3
treq
⊢ ⋃ A = ⋃ x ∈ A x → Tr ⁡ ⋃ A ↔ Tr ⁡ ⋃ x ∈ A x
4
2 3
ax-mp
⊢ Tr ⁡ ⋃ A ↔ Tr ⁡ ⋃ x ∈ A x
5
1 4
sylibr
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋃ A