This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | triin | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
| 2 | 1 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 3 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
| 4 | trss | ⊢ ( Tr 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵 ) ) | |
| 5 | 4 | imp | ⊢ ( ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐵 ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( Tr 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) |
| 7 | 3 6 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) |
| 8 | ssiin | ⊢ ( 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ⊆ 𝐵 ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 10 | 2 9 | sylan2b | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) → 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 11 | 10 | ralrimiva | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → ∀ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 12 | dftr3 | ⊢ ( Tr ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 𝑦 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 13 | 11 12 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵 ) |