This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive, see also trrelressn . (Contributed by Peter Mazsa, 16-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trressn | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an3 | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) | |
| 2 | eqbrb | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ) | |
| 3 | eqbrb | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) ) |
| 5 | eqbrb | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) | |
| 6 | 1 4 5 | 3imtr4i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
| 7 | brressn | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) ) | |
| 8 | 7 | el2v | ⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 9 | brressn | ⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) | |
| 10 | 9 | el2v | ⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
| 11 | 8 10 | anbi12i | ⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 12 | brressn | ⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) ) | |
| 13 | 12 | el2v | ⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
| 14 | 6 11 13 | 3imtr4i | ⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
| 15 | 14 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
| 16 | 15 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |