This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trrelressn | ⊢ TrRel ( 𝑅 ↾ { 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trressn | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) | |
| 2 | relres | ⊢ Rel ( 𝑅 ↾ { 𝐴 } ) | |
| 3 | dftrrel3 | ⊢ ( TrRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ TrRel ( 𝑅 ↾ { 𝐴 } ) |