This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive, see also trrelressn . (Contributed by Peter Mazsa, 16-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trressn | |- A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an3 | |- ( ( ( x = A /\ A R y ) /\ ( y = A /\ A R z ) ) -> ( x = A /\ A R z ) ) |
|
| 2 | eqbrb | |- ( ( x = A /\ x R y ) <-> ( x = A /\ A R y ) ) |
|
| 3 | eqbrb | |- ( ( y = A /\ y R z ) <-> ( y = A /\ A R z ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) <-> ( ( x = A /\ A R y ) /\ ( y = A /\ A R z ) ) ) |
| 5 | eqbrb | |- ( ( x = A /\ x R z ) <-> ( x = A /\ A R z ) ) |
|
| 6 | 1 4 5 | 3imtr4i | |- ( ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) -> ( x = A /\ x R z ) ) |
| 7 | brressn | |- ( ( x e. _V /\ y e. _V ) -> ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) ) |
|
| 8 | 7 | el2v | |- ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) |
| 9 | brressn | |- ( ( y e. _V /\ z e. _V ) -> ( y ( R |` { A } ) z <-> ( y = A /\ y R z ) ) ) |
|
| 10 | 9 | el2v | |- ( y ( R |` { A } ) z <-> ( y = A /\ y R z ) ) |
| 11 | 8 10 | anbi12i | |- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) <-> ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) ) |
| 12 | brressn | |- ( ( x e. _V /\ z e. _V ) -> ( x ( R |` { A } ) z <-> ( x = A /\ x R z ) ) ) |
|
| 13 | 12 | el2v | |- ( x ( R |` { A } ) z <-> ( x = A /\ x R z ) ) |
| 14 | 6 11 13 | 3imtr4i | |- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
| 15 | 14 | gen2 | |- A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
| 16 | 15 | ax-gen | |- A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |