This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivsubgsnd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| trivsubgsnd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| trivsubgsnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| trivsubgsnd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
| Assertion | trivsubgsnd | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trivsubgsnd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | trivsubgsnd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | trivsubgsnd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | trivsubgsnd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
| 5 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐵 = { 0 } ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 8 | 1 2 5 6 7 | trivsubgd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 = 𝐵 ) |
| 9 | velsn | ⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑥 ∈ { 𝐵 } ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ∈ { 𝐵 } ) ) |
| 12 | 11 | ssrdv | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) ⊆ { 𝐵 } ) |
| 13 | 1 | subgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 | 14 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 12 15 | eqssd | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) = { 𝐵 } ) |