This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivsubgsnd.1 | |- B = ( Base ` G ) |
|
| trivsubgsnd.2 | |- .0. = ( 0g ` G ) |
||
| trivsubgsnd.3 | |- ( ph -> G e. Grp ) |
||
| trivsubgsnd.4 | |- ( ph -> B = { .0. } ) |
||
| Assertion | trivsubgsnd | |- ( ph -> ( SubGrp ` G ) = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trivsubgsnd.1 | |- B = ( Base ` G ) |
|
| 2 | trivsubgsnd.2 | |- .0. = ( 0g ` G ) |
|
| 3 | trivsubgsnd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | trivsubgsnd.4 | |- ( ph -> B = { .0. } ) |
|
| 5 | 3 | adantr | |- ( ( ph /\ x e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 6 | 4 | adantr | |- ( ( ph /\ x e. ( SubGrp ` G ) ) -> B = { .0. } ) |
| 7 | simpr | |- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. ( SubGrp ` G ) ) |
|
| 8 | 1 2 5 6 7 | trivsubgd | |- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x = B ) |
| 9 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 10 | 8 9 | sylibr | |- ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. { B } ) |
| 11 | 10 | ex | |- ( ph -> ( x e. ( SubGrp ` G ) -> x e. { B } ) ) |
| 12 | 11 | ssrdv | |- ( ph -> ( SubGrp ` G ) C_ { B } ) |
| 13 | 1 | subgid | |- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 14 | 3 13 | syl | |- ( ph -> B e. ( SubGrp ` G ) ) |
| 15 | 14 | snssd | |- ( ph -> { B } C_ ( SubGrp ` G ) ) |
| 16 | 12 15 | eqssd | |- ( ph -> ( SubGrp ` G ) = { B } ) |