This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivnsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| trivnsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| trivnsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| trivnsgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
| Assertion | trivnsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trivnsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | trivnsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | trivnsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | trivnsgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
| 5 | nsgsubg | ⊢ ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 7 | 6 | ssrdv | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 1 2 3 4 | trivsubgsnd | ⊢ ( 𝜑 → ( SubGrp ‘ 𝐺 ) = { 𝐵 } ) |
| 9 | 7 8 | sseqtrd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ⊆ { 𝐵 } ) |
| 10 | 1 | nsgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 12 | 11 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ( NrmSGrp ‘ 𝐺 ) ) |
| 13 | 9 12 | eqssd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) |