This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trivnsgd.1 | |- B = ( Base ` G ) |
|
| trivnsgd.2 | |- .0. = ( 0g ` G ) |
||
| trivnsgd.3 | |- ( ph -> G e. Grp ) |
||
| trivnsgd.4 | |- ( ph -> B = { .0. } ) |
||
| Assertion | trivnsgd | |- ( ph -> ( NrmSGrp ` G ) = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trivnsgd.1 | |- B = ( Base ` G ) |
|
| 2 | trivnsgd.2 | |- .0. = ( 0g ` G ) |
|
| 3 | trivnsgd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | trivnsgd.4 | |- ( ph -> B = { .0. } ) |
|
| 5 | nsgsubg | |- ( x e. ( NrmSGrp ` G ) -> x e. ( SubGrp ` G ) ) |
|
| 6 | 5 | a1i | |- ( ph -> ( x e. ( NrmSGrp ` G ) -> x e. ( SubGrp ` G ) ) ) |
| 7 | 6 | ssrdv | |- ( ph -> ( NrmSGrp ` G ) C_ ( SubGrp ` G ) ) |
| 8 | 1 2 3 4 | trivsubgsnd | |- ( ph -> ( SubGrp ` G ) = { B } ) |
| 9 | 7 8 | sseqtrd | |- ( ph -> ( NrmSGrp ` G ) C_ { B } ) |
| 10 | 1 | nsgid | |- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
| 11 | 3 10 | syl | |- ( ph -> B e. ( NrmSGrp ` G ) ) |
| 12 | 11 | snssd | |- ( ph -> { B } C_ ( NrmSGrp ` G ) ) |
| 13 | 9 12 | eqssd | |- ( ph -> ( NrmSGrp ` G ) = { B } ) |