This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | triv1nsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| triv1nsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| triv1nsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| triv1nsgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | ||
| Assertion | triv1nsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | triv1nsgd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | triv1nsgd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | triv1nsgd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | triv1nsgd.4 | ⊢ ( 𝜑 → 𝐵 = { 0 } ) | |
| 5 | 1 2 3 4 | trivnsgd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) |
| 6 | snex | ⊢ { 0 } ∈ V | |
| 7 | 4 6 | eqeltrdi | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 8 | ensn1g | ⊢ ( 𝐵 ∈ V → { 𝐵 } ≈ 1o ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → { 𝐵 } ≈ 1o ) |
| 10 | 5 9 | eqbrtrd | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) |